IMPERIAL COLLEGE LONDON

COMPUTER LAB ASSIGNMENT REPORT

Building, Simplifying and Evaluating
Binary Trees

Lei Wang (Wilson) - 01214043

Submitted: May 10, 2018

Contents

I The struct array_aux 2
1 General Introduction 2
2 The Constructor 6
3 Check Available Routes 6
4 Delete Routes 6
5 Collect, Sort, Generate 6
II buildcompactbdt 8
1 Loading Inputs 8
2 Extreme Cases 8
3 Calculating Weights and Simplification 8
4 Sorting Routes 13
5 Building Routes and Filling Os 13
IIT evalcompactbdt 18
IV Other Functions 19
1 binaryTolnt 19
2 nodeNamer 19
3 nodeList 19
4 nodeSetZero 20
5 nodeCounter and nodeCountAux 21
V Testing 22
VI Code 31
Computer Lab Assignment Report 1 @Lei Wang 2018

Part 1

The struct array_aux

1 General Introduction

In the assignment, the students were
asked to provide a piece of C++ coding, that
would build a tree with the minimum num-
ber of nodes, and would evaluate the built
trees. Simplification must take place to re-
duce the number of nodes in the tree. Two
common approaches are to build first and
simplify after, or to simplify first and build
after.

I will be using the latter case, which is

simplifying first and then building the tree.

The number of characters n in each
string input is passed into the constructor
of array_aux. The user inputs are stored in
the seq_2D_char_input matrix, implemented
using a 2D char array. The simplification
will then take place. The 1D int array,
seq_1D_int, is of length 2". In the 1D int
array, the elements hold the default value of
-1. If an input, for example, 1001, is passed
in, the program will first convert 1001 to
9. The binary to decimal conversion is done
outside the struct, using a finction called bi-
naryTolnt. The program will go to the 9th
location in the seq_1D_int array and set the
value at that location to a number and the
number is the index in the seq_2D_char_input
matrix where the input is stored. Every
time an input is stored, the program will
find the next location in the matrix where
no valid records are stored. The index of
that location is stored in the seq_1D_int ar-
ray at the location that is equal to the dec-

imal value of the input binary string. In

other words, the int array is used as a map-
ping, to show the location of the record in
the matrix. It is a way to reduce the size
of the matrix. Suppose if the matrix is ini-
tialized with a dimension of 2" % n, while
there are only 5 inputs. In this case, 2" — 5
rows are wasted, which is not RAM effi-
cient. Hence the program uses a list of in-
tegers to show the index of the record in
the record matrix. The size of the record
matrix, seq_2D_char_input, can be reduced
to the total number of inputs from the in-
put vector. Also, seq_1D_2D_available_space
is used to show whether there is a record
at the index given in the seq_2D_char_input
matrix, so that the program does not have
to compare every element in a record in the
matrix to determine whether the record is
valid or not.

By hiding the complexity of storing the
input binary strings, the data structure can
be viewed in table 2. When the program
wants to access a record whose decimal value
is k, the program will first go to the kth lo-
cation in the int array and retrieve the in-
formation stored at that location. If the re-
trieved number j is not -1, meaning it holds
a valid record, the program will then go to
the jth location in the char matrix to get
the exact information in the record. If a
record is to be deleted, the jth element in
the seq_1D_2D_available_space is set to false.
In the following explanation of the program,
the way of describing data structure is in ta-
ble 2. The actual implementaion is different

from implementing a matrix like table 2.

Computer Lab Assignment Report

@Lei Wang 2018

Name Type Dimension Explanation

input_string_length int number of characters in each input string
array_length_1D int total number of different possible inputs
vector_len int number of elements in the input vector
seq_1D_int int array 2" array stores the indices of routes
seq_2D_char_input char matrix wvector_len xn matrix stores the input
seq_1D_2D_available_space bool array wvector_len shows if a record exists in the 2D char table
seq-2D_int_sort int matrix nx6 used in sorting

Table 1: Members of the struct array_aux

| bit 0 bit 1 bit 2 bit3 ... bit n-1
row 0 [ap;1 ap,2 Q0,3 e ap,n—1
row 1 aio ai a2 Q1,3 e a1 n—1
row 2 20 az a2 9 A23 e a2.n—1
row 3 aso as as 2 @33 e a3 n—1

Table 2: Data structure that stores the inputs with dimension 2" xn

| bit 0 bit 1 bit 2 bit 3

record 9 ‘ 1

0

0

1

Table 3: Example: input = 1001 (9 in decimal), stored in the seq_2D_char_input matrix

In the seq 2D_char_input matrix, if a
record exists, the corresponding bits will be
set according to the binary strings input by
the user. The matrix contains all the pos-
Each
bit in the matrix will take one of the 3 pos-
sible values, 0, 1 or 2. To set the bits in

the matrix, the binary string is converted

sible combinations of different bits.

to the corresponding decimal value, denoted
as k. Then the program will go to the kth
row in matrix. The row has the identical
length as the length of each individual in-
put string. Each bit in the row is set to
either 1 or 0 based on the binary. Also, in
the seq_1D_2D_available_space array, the el-

ement that links to the record is set to true.

The input binary strings are stored in

a vector. The program will iterate through

all the strings in the vector. For the rows in

the seq_2D_char_input matrix that are not

operated on, the default value of the bits in

those rows is 2. During simplification, the

bits that originally hold a 1 or 0 can be set
to 2 as well. If a row is filled with 2, the row

does not hold a record and does contribute

to the structure of the simplified binary

tree.

The corresponding elements in the

seq-1D_2D_available_space array will have

values of false. To check whether a record

exists at a given index m, the program does
not have to check all the bits in the mth

row in the matrix. Instead, using the value

at the mth element in the seq_1D_int array

as an index and using the index to check in

Computer Lab Assignment Report

@Lei Wang 2018

the seq_1D_2D_available_space array is suffi-
cient.

The seq_2D_int_sort matrix has a dif-
ferent dimension from the previously ex-
The

seq_2D_int_sort matrix holds information on

plained seq_2D_char_input matrix.

certain bit position in any binary string, in-

stead of each binary string from the input.

A row number ¢ in the matrix corresponds
The
values in each row in the matrix are expi-
aned in table 5. Note that the values in the

seq-2D_int_sort matrix are set after simpli-

to the ¢th bit in any input string.

fication. Bit 2 and bit 3 in row ¢ are set
by counting the number of 1s and 0s in the

seq_2D_char_input matrix at column gq.

| bit 0 bit 1 bit2 bit3 bit4 bit5
row 0 | app ap1 Qo2 Qo3 Qo4 Qos
row 1 ay0 ai ay2 a3 a4 a5
row 2 2.0 2.1 2.2 2.3 a2.4 25
row 3 as,o a3z a3,2 as ;3 as 4 ass
row n Qn,0 Qn,1 Qnp,2 Qp,3 Q4 Qn 5

Table 4: Structure of the seq_2D_int_sort matrix with dimension n * 6

| bit 0 bit 1 bit 2 bit 3 bit 4 bit 5
TOW n | n counter: counter: max sum weight of the bit n
bitn =0 bitn=1 ofbit 1&2 of bit 1&2
at row n at row n

Table 5: Explanation of each bit in the seq_2D_int_sort matrix

Computer Lab Assignment Report

@Lei Wang 2018

Function

Description

array_aux(int len, int len_of_vector)
~array_aux()

int return_array_length_1D()

void seq_1D_int_set(int position, bool val)
int seq_1D_int_return(int position)

void seq_1D_int_test()

void seq_2D _char_input_set

(int position, std::string binary_string)

void seq_2D_char_input_set_bit
(int position, int bit, char info)

char seq_2D_char_input_return(int x, int y)

int seq_2D_char_input_weight(int position)
void seq_2D _char_input_test|()

int check_available_routes()

void delete_route(int position)

void seq-2D_int_sort_bit_set()

void seq_2D _int_sort_bit_sort(int bit_sort)

void seq-2D_int_sort_bit_run()

int seq_2D_int_sort_return(int x, int y)
void seq-2D_int_sort_test/()

void seq-2D_int_sort_priority_gen()

constructor, initialize the members in the struct
destructor, release memory

return the member array_length 1D

change the element in the seq_1D_int array
return one element in the seq_1D_int array

print the elements with index
in the seq_1D_bool array

set one row in the seq_2D_char_input matrix
at given index using given string

set certain bit in the seq_2D_char_input matrix
using the given index

return the element at give index
in the seq_2D _char_input matrix

treat 2 as 1 and calculate the decimal value at give index
print the seq_2D_char_input matrix

check the number of routes
that will be used in building the tree

delete a route at give index

update elements in the seq 2D _int_sort matrix
using the seq_2D _char_input matrix

sort the seq_2D_int_sort matrix
using a certain column

sort the seq_2D_int_sort matrix
using column 4 first, followed by column 3

return one element in the seq 2D _int_sort matrix
print the seq_2D_int_sort matrix

generate the priority of each bit
and store them in the seq_2D_int_sort matrix

Table 6: Member functions in the struct array-aux

Computer Lab Assignment Report

5 @Lei Wang 2018

2 The Constructor

The function array_auz() is the con-
structor of the struct array_auxr and takes
in two arguments, which is the length
of one individual input binary string (de-
noted as h), and the size of the input
vector (denoted as v). The constructor
first set the input_string_length member to
Then the con-

structor calculates array_length_1D, which

h and wvector_len to w.

is the total number of possible combina-
tions, using the formula 2". array_length_1D
and input_string_length are used to ini-
tialize the seq 1D_2D_available_space ar-
ray, the seq 2D_char_input matrix and the
seq-2D_int_sort matrix. The dimensions of
those arrays and matrices can be found in
table 1.

3 Check Available Routes

The function check_available_routes() is
used to count how many elements that hold
the value of true in the seq_1D_bool array.
The returned result indicates the number of
available routes that can be used to build
the simplified the binary tree. The returned
value will change when the function is called
at different simplification cycles. Initially,
the function is invoked before and after a
simplification cycle. If the returned values
are the same, then the whole simplification
process has reached an end and no more
simplification is possible. The program will

then move onto the building stage.

4 Delete Routes

The function delete_route(int position)

is used to delete a route at a given in-

dex. To delete the route, the func-
tion will set all the bits in the respec-
tive row in the seq 2D_char_input matrix
to 2 and the respective element in the

seq-1D_2D_available_space array to false.

5 Collect, Sort, Generate

The function seq-2D_int_sort_bit_set()
will count the number of 1s and Os at certain
bits. In other words, the function counts
the number of 1s at bit 0, bit 1, bit 2...until
the last possible bit among all the available
routes. And store the result in the third el-
ement at row 0, row 1, row 2...until the last
row in the seq_2D_int_sort matrix. Then the
program will do the same for counting Os,
but the result is stored in the second element
in each row in the matrix. The fourth ele-
ment in each row will store the bigger num-
ber by comparing the second and the third
element in the same row. The fifth element
will be the sum of the second and the third
element in the same row. The sixth element
in the row is the priority of the bit position
associated with the row. The first element
in the row of the matrix is the row num-
ber (counting from 0) plus 1, since the node
numbering in the final built tree starts from
1, instead of 0.

The function seq_2D_int_sort_bit_sort(int
bit_sort) will arrange the rows in the
seq_2D_int_sort matrix. The principle of
rearranging is comparing elements in a col-
umn of the mateix. The column number will
be given when invoking the function. The
algorithm used is bubble sort.

The function seq_2D_int_sort_bit_run()

will run the function seq_2D_int_sort_bit_sort(int

bit_sort) twice, but the parameters passed

Computer Lab Assignment Report

@Lei Wang 2018

in are 4 first followed by 3. This means that
the rows in the seq_2D_int_sort matrix will
be sorted twice, first by the column showing
the sum, followd by the column showing the
maximum.

seq-2D_int_sort_priority_gen() is used to
generate the priority of each bit position and
fill in the sixth column in the seq_2D_int_sort
matrix. The priority starts from 1 and incre-
ment by 1 every time a new and lower pri-
ority level is reached. The smaller the value
of the priority level is, the higher the prior-

ity will be. Two bit positions, or two rows,

will only have the same level of priority if
and only if the max and the sum elements
are the same. For instance, the max of row
4 equals that of row 5, and the sum of row
4 equals that of row 5, then row 4 and row
5 will have the same priority. If any of the
two requirements are not satisfied, the pri-
ority generated will be different. Rows on
the top of the matrix will have the highest
priority.

Table 7 to Table 11 show the way of

rearranging and priority generating.

bit 0 bit 1 bit 2

row 0
row 1
row 2
row 3
row 4
row 9
row 6
row 7

NN DN DNNO N

=N NNO NN O

= O NO NN

Table 7: Demo: input table

| bit 0 'bit 1 bit 2 bit 3 bit 4 bit 5

| bit 0 bit 1 bit2 bit 3 bit4 bit5

row 0 | 0 1 2 2 3 0
row 1 |1 2 1 2 3 0
row 2 | 2 2 2 2 4 0

row 2 | 2 2 2 2 4 0
row 0 | 0 1 2 2 3 0
row 1| 1 2 1 2 3 0

Table 8: Demo: seq-2D_int_sort matrix, count
for Os and 1s updated

bit 0 bit 1 bit2 bit3 bit4d bit5

Table 9: Demo: seq_2D _int_sort matrix, sort us-
ing the sum (bit 4)

| bit 0 bit 1 bit 2 bit 3 bit4 bit 5

row 2 | 2 2 2 2 4 0
row 0 | 0 1 2 2 3 0
row 1 |1 2 1 2 3 0

row 2 | 2 2 2 2 4 1
row 0 | 0 1 2 2 3 2
row 1|1 2 1 2 3 2

Table 10: Demo: seq_2D_int_sort matrix, sort
using the max (bit 3)

Table 11: Demo: seq_2D_int_sort matrix, prior-

ity added

Computer Lab Assignment Report

@Lei Wang 2018

Part 11

buildcompactbdt
1 Loading Inputs

In the first stage of building the tree,
an array_aur object is instantiated and is
called array_gen. The parameter passed in
is the length of one individual input string.
To load the binary strings, a For loop is
used to iterate through the elements in the
input string vector. Function binaryTolnt
is invoked to convert the binary string to a
decimal integer. The input string will then
be stored in array_gen at index that corre-

sponds to its decimal value.

2 Extreme Cases

Two extreme cases exist after all the in-
puts are loaded. The first one is that the
number of valid records is 0, meaning re-
gardless of the inputs, the tree will always
produce a 0 at the output. The solution
to this extreme case is to build a tree with
only one node that has the value of 0. The
pointer of the node is returned and the build-

compactbdt() function is terminated.

The other extreme case is that the num-
ber of valid records equals the total number
of possible inputs. In other words, the bi-
nary tree will always produce a 1 regardless
of the inputs. The solution is to build a tree
with only one node that has the value of 1.
The pointer of the node is returned and the

buildcompactbdt() function is terminated.

Weights

and Simplification

3 Calculating

After loading inputs comes the simpli-
fying stage. The principle is simple Boolean
algebra. If two records differ by only 1 bit
while both of them give out a 1 as the out-
put. Then the different bit can be treated
as the don’t care bit and can be removed
in both records, resulting in a route that is
1 bit shorter than the orignal route. The
second record in the comparison is deleted
by calling the member function delete_route
using the index of the second record.

Question on finding the index of the
second record arises. Since the two records
only differ by one bit. And the bit posi-
tion is known. Hence technically the index
of the second record can be calculated. If
the second record does not exist, or it does
not produce a output as 1, then the compar-
ison does not produce further simplification
at certain bit position with certain record.
The program will move on to the next record
that will show a 1 at the output.

Before simplification:

bit 0 bit 1 bit 2
row 0 | 2 2 2
row 1 | 2 2 2
row 2 | 0 1 0
row 3 | 2 2 2
row 4 | 2 2 2
row 5 | 2 2 2
row 6 | 1 1 0
row 7 | 2 2 2

After simplification:

Computer Lab Assignment Report

@Lei Wang 2018

bit 0 bit 1 bit 2
row 0 | 2 2 2
row 1 | 2 2 2
row 2 | 2 1 0
row 3 | 2 2 2
row 4 | 2 2 2
row 5 | 2 2 2
row 6 | 2 2 2
row 7 | 2 2 2

In the above example, row 2 and row
6 are being compared. The pointer for the
records traverses from the top to the bottom
of the matrix. In other words, the record
pointer moves from smaller index to larger
index in each cycle of simplification. And
horizontal pointer for the bit moves from the
left to the right. In this demonstration, the
record pointer points to row 2 and the bit
pointer points at bit 0. The second record
for comparison should locate at distance of
22 = 4 after the first record. The first record
for comparison locates at index 2. Hence the
second record for comparison locates at in-
dex 6. At index 6, a record exists that will
produce a 1 at the output. Hence, for the
first record, or the record at index 2 in the
matrix, its bit 0 can be treated as don’t care
case and can be removed from the record at
index 2. The record at index 6 is removed
as well as a result of the simplification.

Each simplification operation can only
simplify one bit in one record at one time.
Once the record is modified, the program
will move on to the next available record.
Multiple operation on the same record is
not allowed in the same simplification cy-
cle. The program will start over, or start
a new simplification cycle, from the very
first record in the input matrix once it has

reached the end of the matrix. To determine

whether the table has reached its most sim-
plified form, the program will do an available
route counting before and after each simpli-
fication cycle. If the counts possess the same
value, then the whole simplification process
is done and the program will move to the

stage of sorting the routes.

During simplification, some routes will
be deleted and some nodes in the route will
be set to 2. The bit labeled as 2 does not
contribute to building the simplified tree. In
the program, a 2 in a simplified route is
treated as 1. Hence the weight, or the cor-
responding decimal value of that route does
not equal to the index of the route. See an

example below for explanation.

bit 0 bit 1 bit 2
row 0 | 0 0 0
row 1 | 0 0 1
row 2 | 0 1 0
row 3 | 0 1 1
row 4 | 1 0 0
row 5 | 2 2 2
row 6 | 2 2 2
row 7 | 2 2 2

The number of valid Each cycle of sim-
plification starts from row 0. The number
of valid records is 5. At row 0 bit 0, a 0 is
present. The weight of row 0 now is 0. The
distance is 22 = 4. The row for comparison
locate at row 0 4+4 = 4. Row 4 has a weight
of 4, which is the same as the weight of row

1 plus the distance.

Computer Lab Assignment Report

@Lei Wang 2018

bit 0 bit 1 bit 2
row 0 | 2 0 0
row 1 | 0 0 1
row 2 | 0 1 0
row 3 | 0 1 1
row 4 | 2 2 2
row 5 | 2 2 2
row 6 | 2 2 2
row 7 | 2 2 2

Simplification between row 0 and row 4
takes place. All elements in row 4 is deleted
by setting them to 2. Also, at row 0 bit 0,
it is set to 2 to indicate the bit is removed

from the route.

bit 0 bit 1 bit 2
row 0 | 2 0 0
row 1 | 0 0 1
row 2 | 0 1 0
row 3 | 0 1 1
row 4 | 2 2 2
row 5 | 2 2 2
row 6 | 2 2 2
row 7 | 2 2 2

Each row can only have one simplifica-
tion in each simplification cycle. Hence the
program will move to row 1. The weight of
row 1 now is 1. The program now looks at
row 1 bit 0, the distance is 22 = 4. Hence
the row for comparison is row 1 + 4 = 5.
However, row 5 is not a valid record since

all its elements are 2.

bit 0 bit 1 bit 2
row 0 | 2 0 0
row 1| 0 0 1
row 2 | 0 1 0
row 3 | 0 1 1
row 4 | 2 2 2
row 5 | 2 2 2
row 6 | 2 2 2
row 7 | 2 2 2

The program now looks at row 1 bit 1.

The corresponding distance is 2! = 2. Hence
the row for comparison is row 142 = 3. The
weight of row 1 now is 1. The weight of row
3 now is 3, which is the same as the weight

of row 1 plus the distance.

bit 0 bit 1 bit 2
row 0 | 2 0 0
row 1| 0 2 1
row 2 | 0 1 0
row 3 | 2 2 2
row 4 | 2 2 2
row 5 | 2 2 2
row 6 | 2 2 2
row 7 | 2 2 2

Simplification takes place between row
1 and row 3. Row 1 bit 1 is set to 2 and row

3 is deleted by setting all elements to 2.

bit 0 bit 1 bit 2
row 0 | 2 0 0
row 1 | 0 2 1
row 2 | 0 1 0
row 3 | 2 2 2
row 4 | 2 2 2
row 5 | 2 2 2
row 6 | 2 2 2
row 7 | 2 2 2

The program now moves to row 2. Row
2 bit 0 is 0 and the distance calculated is
4. Hence the row for comparison is row 6.

The

program then moves to row 2 bit 1. But the

However, row 6 is not a valid route.

matrix produces a 1 at this location. Hence

this location is skipped for simplification.

Computer Lab Assignment Report

10

@Lei Wang 2018

bit 0 bit 1 bit 2
row 0 | 2 0 0
row 1 | 0 2 1
row 2 | 0 1 0
row 3 | 2 2 2
row 4 | 2 2 2
row 5 | 2 2 2
row 6 | 2 2 2
row 7 | 2 2 2

The next bit for comparison is row 2 bit
2. The distance calculated is 2° = 1. Hence
the row for comparison is row 3. But row
3 is not a valid record. This cycle of sim-
plification reaches an end since row 2 is the
last row that produces a valid record. The
number of valid records is 3, which is dif-
ference from the number of valid records at
the start of this simplification cycle. Hence
another cycle will start from the first valid

record, which is row 0 in this case.

bit 0 bit 1 bit 2
row 0 | 2 0 0
row 1 | 0 2 1
row 2 | 0 1 0
row 3 | 2 2 2
row 4 | 2 2 2
row 5 | 2 2 2
row 6 | 2 2 2
row 7 | 2 2 2

At the start of this simplification cycle,
the number of valid records is 3. Since 2 is
treated as 1 in this algorithm, the first posi-
tion for comparison is row 0 bit 1. The cor-
responding distance is 2. The weight of row

0 now is 4. The row for comparison is row 2

with weight 2, which is not the same as the
weight of row 0 plus the distance. Hence the
simplification does not take place between

row 0 and row 2 at bit position 1.

bit 0 bit 1 bit 2
row 0 | 2 0 0
row 1 | 0 2 1
row 2 | 0 1 0
row 3 | 2 2 2
row 4 | 2 2 2
row 5 | 2 2 2
row 6 | 2 2 2
row 7 | 2 2 2

The next comparison is between row 0
and row 1 at bit 2. The weight of row 0 is 4.
The distance is 1. The weight of row 1 is 3,
which is not the same as the weight of row
0 plus the distance. Hence no simplification
takes place.

The remaining discussion on whether
the simplification will take place follows the
same pattern. In this case, no other simpli-
fication cycle is possible. The final matrix

will be the following:

bit 0 bit 1 bit 2
row 0 | 2 0 0
row 1 | 0 2 1
row 2 | 0 1 0
row 3 | 2 2 2
row 4 | 2 2 2
row 5 | 2 2 2
row 6 | 2 2 2
row 7 | 2 2 2

Row 0, 1 and 2 will be used for building
the binary tree.

Computer Lab Assignment Report

@Lei Wang 2018

End of Sim-
plification

Check the
number of
valid records

1 < len_route?

T

{ Increment 7 }

! found?

yes

Calculate Get weight
distance d at bit b § a at row ¢)

Row 7 + d valid
and b =a -+ d?

Same route count Start of Sim-
as before? plification
N\ J
' N
() heck th
Set route Check the
) number of
counter 7 to 0 .
L) __ valid records |
' N
Go to it" route
N l J
' N
Valid route? Set found to false
N\ J
' N
Set bit position
b < str_len and counter b to 0

Delete row 7 + d
N\ J
Delete bit
b at row 1
N\ J

{ found = true

Get weight b
at row ¢ + d

Note:

str_len is the length of a binary string
len_route is the total number of all possible
routes 25r-ler

Figure 1: Flowchart for simplfying the routes

Computer Lab Assignment Report 12

@Lei Wang 2018

4 Sorting Routes

Member functions seq_2D_int_sort_bit_run()

and seq_2D_int_sort_priority_gen() will be
invoked for generating the priority of each

bit position.

The program will then initialize a t *
2 matrix. t is the number of availe-
ble routes, which can be obtained using
the check_available_routes() member func-
tion. In each row of the matrix, the first
element will be the route/valid record po-
sition and the second element will be the
calculated weight of the route. The matrix
does not hold the specific information on the
route but the priority level and the index of
the route. The priority is calculated using
the priority generated for each bit position.
Note than a 2 in the route record does not
contribute to the weight of the route but a 1
or a 0 will contribute to the weight. In other
words, when there is a 0 or a 1 in a certain
bit position in a certain record, the weight
or the priority of the bit position is added to
the total weight of the route. Once the ma-
trix that holds the route index and the route
weights is generated, it will be sorted with
bubble sort using the weight of each route

as the sorting key.

In program’s implementation, a low
weight, or a small value in the priority indi-
cates a high priority, meaning the route asso-
ciated with the weight should be built prior
to the remaining routes. The first route with
the highest priority will be built first so that
the other routes can have a place to build

upon.

5 Building Routes and
Filling Os

Since there are nodes in a route that
will be ignored, each route could have dif-
ferent lengths. In order to determining the
end of a route, the number of nodes that will
be used in building has to be available be-
fore building the route. The number of use-
ful nodes in a route is determined by check-
ing all the emelents in the route using a For
loop. The counter is set to be equal to the
length of a binary string (the length of each
string from inputs). If the element is a 2,
the counter will be decremented. Back to
building the tree, every time a node is added
to the route, the counter for the no-ignore
nodes will decrement. The route will reach
an end when the counter reaches 0 and in the
end of the route, a 1 will be added to the la-
bel of the last non-leaf node. The sequence
of the nodes in building each route, from the
top to the bottom of the tree, will be follow-
ing the node, or the bit priorities, which is
determined previously by calling the mem-
ber functions. The standard procedure of
building a route will be getting the route in-
dex, getting the bit position in the bit prior-
ity sequence, and checking the correspond-
ing bit in the route. If the result is a 1, then
a new node will be generated and labeled
with the bit position, by calling the node-
Namer() function. Then the pointer will
point to the right of the current node. If
the result is 0, then the same procedure will
apply other than the pointer will be pointing
to the left of the current node. If the result
is 2, then no new node will be added to the
tree.

The pointer will stay at the current

position.

Computer Lab Assignment Report

@Lei Wang 2018

Note: using i*" row’s
first element ¢ as the

for(int i=0; i
smaller than

<~ bit pointer to return the
str_len; i++) (¢ — 1) bit in the first
() route to be built
() () (Set left, rigt)
k Get node name | \ Get node name | to NULL
f New) f New) e Set th)
bdtnode at bdtnode at no e‘(cit elc un:centlz
L pointer — right) L pointer — left) | frode value 1o - |
1 1
Set Set
pointer — left pointer — right
to NULL, to NULL,
go to right) § go to left)
Vs

{decrement n by 1 J—V

Figure 2: Flowchart of building the first route

After the first route is done, the pro-
gram will move onto building other available
routes. The difference between building the
first route, and those that come after the
first one, is the node name check. The node
name, or the bit associated with the node
name, will be used to guide the building pro-
cess. If the bit position in the route is 1, then
the pointer will point to the right of the cur-
rent node and move on. If it is a 0, then the
pointer will point to the left and move on.

If it is a 2, the program will treat it as a 1,

meaning the pointer will point to the right of
the current node. A 2 indicates a don’t care
case and it does not matter which direction
it will lead the pointer. However, the direc-
tion has to be consistent. It is not allowed
that a 2 will lead the pointer to either the
left or the right in the same tree.

In the building process, only 1s are filled
at the leaf nodes. The missing Os at the leaf
nodes will be filled by calling the function
nodeSetZero(). The root of the binary tree

is returned as the output.

Computer Lab Assignment Report

@Lei Wang 2018

1,
Se Return counter
counter = str_len
no
Set loop 7 smaller than
counter 7 to 0 str_len?

ith bit equals 27? 1o

yes

counter decre-
ment by 1

(1 increment by 1 |«—
it 1

Figure 3: Flowchart of counting the number of nodes that contributes to building the tree

At " route
set found to false
set cto 0

no

found false?

In the used node
array
¢ position false?

yes

In the char table
it row ¢th bit
equals 27

Use the ct®
bit in the bit
priority sequence

Note:

char table:
seq_2D_char_input matrix
bit priority sequence:
seq_2D_int_sort leftmost
column

cth bit

Node label found }

no

yes

{Set found to true}

{ Increment ¢ by 1 %

Figure 4: Flowchart of knowing the current node label, finding the next node label in building

the route

Computer Lab Assignment Report

@Lei Wang 2018

{Increment r by 1 }

Fill in 1 in
the last node

s 2

pointer — right

k .
{ Labjl the J

new node

new bdtnode

N\ J

' N
Get the next
node name

N\ J

yes
o

{ Set the route J

counter r to 1

|

r <N?
yes
' N
Reset node
pointer to root
N J

Build the rt*
route. Get

the no ignore

node count n
v

Reset elements
in the used node

~

| array all to false)
l /

s 2

Get the current
node’s label

i

[In the used node |
array, set the
current node
status to true

1
Get the corre-
sponding bit in

§ the routing table)

Finish building
routes. Adding
0Os required

Note

N: total number of routes

n decrement by 1}

{ pointer — left

}

|

Label the

new node

0

new bdtnode

Get the next
node name

yes

[e)

AN

pointer — right |—

|

Label the
new node
new bdtnode
Get the next
L node name)
yes
n

Figure 5: Flowchart of building the remaining routes

Computer Lab Assignment Report

16

@Lei Wang 2018

{Initialize the root}

l

yes
Label root 0

no
yes
Label root 1
no
(R
new ar- Load |
ray-auzr object oad mputs
Generate pri-) 0 N
ority of each Simplify routes
bit positions L)
Calculate weight Sort routes
of each route using weights
J -

[Build the | Build the
remaining routes first route

Label those
nodes that should
|_have a value of 0 |

Return root
of the tree

Figure 6: Flowchart of the function buildcompactbdt

Computer Lab Assignment Report 17 @Lei Wang 2018

Part 111

evalcompactbdt

The function evalcompactbdt will start
from the root of the tree. In each itera-
tion before getting a 1 or a 0, the function
will get the number in the node name after
the character x, using the substr method in
the string library. There is a difference of
1 between the integer returned from trim-
ming the node name and the bit it points
to. Hence the returned integer number has
to be deducted by 1. The integer will then
be used as a pointer to find the correspond-
ing value in the input string. If at that bit
it is a 1, then move to the right. Else if it is
a 0, then move to the left. The iteration is
controlled using a while loop. When a 1 or a
0 is reached, the boolean variable that con-
trols the while loop will be set to true and
the loop will be terminated. The loop will
be running if the boolean variable is false.
The final value at the node will be returned

as the output.

{ label

get node J

(7

Compare bit

S J

(Direct to the\

next node

Output
the result

During the building process of the tree,
the nodes are not always arranged in order.
In other words, the nodes on the top does
not always start from x1. The order is ran-
dom while the rule of finding the output is
fixed. The label of each node can lead to
a bit in the input string. Hence a simple
look up and check algorithm is implemented

here.

An example here will be to use the bi-

nary string 101 and the above tree for eval-
uation. The label on the root of the tree is
x3. The third bit, counting from the left, the
character is 1. 1 indicates going to the right
of the tree. The next node is labeled as x1.
The first bit in the input string is 1. Hence
the next step is to move to the right of the
node. The next node is x2. Checking the
second bit in the string outputs 0. Hence
move to the left of the x2 node. A final
value is shown here, which is 1. Therefore,
using the binary string 101 and the above
tree yield an output of 1.

Computer Lab Assignment Report

@Lei Wang 2018

Part IV
Other Functions

Function

Description

int binaryTolnt(const std::string num)
std::string nodeNamer(const int level label)
void nodeList(bdt t)

void nodeSetZero(bdt t)

int nodeCounter(bdt t)

void nodeCountAux(bdt t, int& count)

convert a binary to an decimal integer

output a string with x appended before the integer
list all the nodes in the tree

set the 0 values in the simplified tree

count the number of leaf nodes

auxiliary function in counting nodes
that traverses the tree recursively

Table 12: Other functions outside the struct array_aux

1 binaryTolnt

The algorithm is to calculate the weight
of each bit in the binary string and sum the
weights up to give the output. The function
will iterate through all the bits in the binary
string, starting from the right most bit. An
int variable is initialized to be 0 and used to

hold the result as the iteration continues.

\ bitn .. bit2 bit1 bit0

weight | 2" .. 22=4 20=2 2°=1

The calculated result will be to use the
bit at the corresponding position to multi-
ply the weight at that bit position. And
then add up all the weights to obtain the
final result.

An example here will be to calculate the

decimal value of the binary string 1011.

\bit?) bit 2 bit1 bit 0

weight | 22 =8 22=4 2'=2 20=1

The result will be 1%8+0%4+1%2+1%x1 =
11.

2 nodeNamer

The function is to add an x in front
of the input integer and output the string.
It initializes a stringstream variable and in-
puts the x followed by the integer. The
stringstream variable is returned after call-
ing the str() method.

3 nodelList

The function is recursive. Its main
body is an If statement to determine
whether the passed in pointer points to a
NULL position or not. If the pointer does
not points to a NULL position, the next

Computer Lab Assignment Report

19 @Lei Wang 2018

statement will be to call itself using the
pointer pointing to the right of the current

node. Then a print statement is used to

The

last statement in the If statement block is to

show the label on the current node.

call the nodeList function using the pointer
pointing to the left of the current node. The
function is used to display all the nodes in

the binary tree, from the rightmost to the

leftmost.
call non-leaf
nodeSetZero(Pointer) node?
new bdtn- Only Right is

ode at Right NULL?

set both subn-
odes to NULL
set Right label to 0

S

4 nodeSetZero

The function is used in building the
tree. As discussed preciously, the buildcom-
pactbdt function will only fill in the 1s at
the end of building each route. A lot of posi-
tions in the binary tree that remain as NULL
while actually should be 0. The function
nodeSetZero is used to change those loca-
tions to 0. The locations that should be la-
beled as 0 should possess the following prop-
erties. Its parent node’s label starts with x.
In other words, its parent is a non-leaf node
in the tree. The information on the node is
NULL. (Refer to Figure 1)

return to
previous function
call

Note:
first function call starts
from the root of the tree
Right = Pointer — Right;
Left = Pointer — Left;

new bdtnode at Left

call

nodeSetZero(Right)

set both subn-
odes to NULL
set Left label to 0

call
nodeSetZero(Left)

Figure 7: Flowchart for nodeSetZero()

Computer Lab Assignment Report 20

@Lei Wang 2018

call
nodeCounter
(Pointer,count)

call

nodeAuz(Pointer) return count

return to
non-leaf .)
previous function
node?

call

Note:
first function call starts
Increment

from the root of the tree
Right = Pointer — Right;
Left = Pointer — Left;

the counter

call
nodeSetZero(Right)

call
nodeSetZero(Left)

Figure 8: Flowchart for nodeCounter() and nodeCountAuzx()

5 nodeCounter and

nodeCount Aux

Those two functions are the last ones
in the submitted code. The function node-
Counter() takes the root of a binary tree as
the argument. Inside the implementation,
it will initialize a int variable count to 0.
It will then call another recursive function
nodeCountAuz() and pass in the root of the
binary tree and the count int variable as the

arguments.

Inside the implementation of the func-

tion nodeCountAuz(), the function will only
be counting the non-leaf nodes. In order
to determine whether the node is non-leaf
node, it will extract the first character of the
label on the node. If the extracted character
is x then the node is a non-leaf node. Once
the non-leaf node is detected, the function
nodeCountAuz() will increment the passed
in variable. Since the counter is passed in
by reference, the effect in each recursive call
will have effect on the variable initialized in
the function nodeCountAuz().

The function nodeCountAuz() returns

the int variable count. (Refer to Figure 2)

Computer Lab Assignment Report

@Lei Wang 2018

Part V

Testing

To ensure at every stage of execution
the program work correctly, the parts in
the code that are labeled as uncomment to
test are uncommented and extra outputs are
produced other than normal evaluation out-
puts.

The folloiwng functions are called in or-
der to producing the extra outputs:

seq-2D_char_input_test()

seq_2D_int_sort_test()
seq-2D_char_input_test()

A For loop is also used to test the
matrix used for sorting routes using the
weights.

The program is tested using the lab
computer running Ubuntu. The computer is
equiped with a i7 6700 CPU with 16GB of
RAM. The maximum length of the binary
string input is 30 characters. When I was
testing 31-character input, I have to change
the int arrays in the struct array_aux to long
arrays. By doing so, the maximum length of
the input strings is 31 characters long. Pro-
gram uses about 4GB of the RAM while us-
ing the 30-bit binary string input with the
arrays in the array_auxr declared as int ar-
rays. With a single 30-character long binary
string input, the lab computer takes about
14 seconds to build the tree.

All of the following tests yield the cor-

rect results.

xl 22 Output

0O 0 0
0 1 1
10 0
1 1 1

set 1, testing 2 bits

testing input array before simplifying

testing the 2D char input array
11

01

after simplification

testing the 2D int sort array
201111

100002

testing the 2D char input array
22

21

testing the available route array
11

00 the result is:
01 the result is:
10 the result is:
11 the result is: 1

traversing the tree

oS = O

root is: x2
1

x2

0

the number of non-leaf nodes is: 1

Computer Lab Assignment Report

@Lei Wang 2018

0O 0 0
0o 1 1
1 0 1
1 1 1

set 2, testing 2 bits

testing input array before simplifying
testing the 2D char input array

10

11

01

after simplification

testing the 2D int sort array
211121

101112

testing the 2D char input array

10

22

21

testing the available route array

11

23

00 the result is:
01 the result is:
10 the result is:
11 the result is: 1

traversing the tree

— = O

root is: x2
1

X2

1

x1

0

the number of non-leaf nodes is: 2

rl 22 x3 Output
0O 0 0 O
0O 0 1 0
0O 1 0 O
0 1 1 1
10 0 0
10 1 1
1 1 0 0
1 1 1 0

set 3, testing 3 bits

testing input array before simplifying
testing the 2D char input array

101

011

after simplification

testing the 2D int sort array
302221

111122

211122

testing the 2D char input array

101

011

testing the available route array

35

5D

000 the result is:
001 the result is:
010 the result is:
011 the result is:
100 the result is:
101 the result is:
110 the result is:
111 the result is:

traversing the tree

o O = O = O O O

root is: x3
0

X2

1

x1

1

Computer Lab Assignment Report 23

@Lei Wang 2018

x2
0
x3
0

the number of non-leaf nodes is: 4

rl 22 x3 Output
0o 0 0 1
0o 0 1 1
0o 1 0 1
0 1 1 1
1 0 0 1
10 1 1
1 1 0 1
1 1 1 0

set 4, testing 3 bits

testing input array before simplifying

testing the 2D char input array

000
001
010
011
100
110
111

after simplification

testing the 2D int sort array

312231
111122
201113

testing the 2D char input array

220
021
222
222
222
222
111

testing the available route array

01
13
76

000 the result is:
001 the result is:
010 the result is:
011 the result is:

—_ = =

Computer Lab Assignment Report

@Lei Wang 2018

100 the result is:

1 rl 22 x3 Output
101 the result is: 0
110 the result is: 1 0 0 0 1
111 the result is: 1 0 0 1 1
traversing the tree 0 1 0 1
) 0 1 1 1
root 1s: x3
1 0 0 1
1
0 1 0 1 1
0 1 1 0 1
1 1 1 1 1
1 set 5, testing 3 bits
<3 testing input array before simplifying
1 testing the 2D char input array
the number of non-leaf nodes is: 3 000
001
010
011
100
101
110
111

000 the result is: 1
001 the result is: 1
010 the result is: 1
011 the result is: 1
100 the result is: 1
101 the result is: 1
110 the result is: 1
111 the result is: 1
traversing the tree root is: 11

the number of non-leaf nodes is: 0

Computer Lab Assignment Report 25 @Lei Wang 2018

rl 22 x3 Output
0O 0 0 O
0O 0 1 0
0O 1 0 O
0O 1 1 0
10 0 0
10 1 0
1 1 0 0
1 1 1 0

set 6, testing 3 bits

000 the result is:
001 the result is:
010 the result is:
011 the result is:
100 the result is:
101 the result is:
110 the result is:
111 the result is:

0

S O O O O o O

traversing the tree

root is: 0
0

the number of non-leaf nodes is: 0

xl 22 x3 x4 Output
0O 0 0 0 O
o 0 0 1 1
0O 0 1 0 O
0 0 1 1 1
o 1 0 0 1
0 1 0 1 1
0O 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
10 1 0 0
10 1 1 1
1 1 0 0 1
1 1 0 1 0
11 1 0 1
1 1 1 1 1

set 7, testing 4 bits

testing input array before simplifying

testing the 2D char input array

0100
0001
1111
1100
0111
0101
1110
0011
1011

after simplification

testing the 2D int sort array

322241
422241
202222
111123

testing the 2D char input array

2100
0201
2222
2222

Computer Lab Assignment Report

@Lei Wang 2018

2222 1

2222 x2

1110 0

2211 the number of non-leaf nodes is: 7
2222

testing the available route array

32

44

15

147

0000 the result is:
0001 the result is:
0010 the result is:
0011 the result is:
0100 the result is:
0101 the result is:
0110 the result is:
0111 the result is:
1000 the result is:
1001 the result is:
1010 the result is:
1011 the result is:
1100 the result is:
1101 the result is:
1110 the result is:
1111 the result is:

traversing the tree

_ = O = = OO O O O e = O

root is: x3
1
x4
1
x1
0
X2
0
x3
0
x1
1
x4

Computer Lab Assignment Report 27 @Lei Wang 2018

xl 22 23 x4 Output 15
0O 0 0 0 0 0000 the result is: 0
O 0 o 1 1 0001 the result is: 1
0 0 1 0 o0 0010 the result is: 0
0 0 1 1 0 0011 the result is: 0
O 1 0 0 1 0100 the result is: 1
0 1 0 1 o0 0101 the result is: 0
0 1 1 0 0 0110 the result is: 0
o 1 1 1 1 0111 the result is: 1
1 0 0 0 0 1000 the result is: 0
1 0 0 1 0 1001 the result is: 0
1 0 1 0 o0 1010 the result is: 0
1 0 1 1 0 1011 the result is: 0
1 1 0 o0 1 1100 the result is: 1
1 1 0 1 o0 1101 the result is: 0
1 1 1 0 o0 1110 the result is: 0
1 1 1 1 1 1111 the result is: 1

Sot 8. tosting 4 bits traversing the tree

testing input array before simplifying root is: x3

testing the 2D char input array L

0100 xd

0001)1(1

1111 0

1100 9

0111 0

after simplification 3

testing the 2D int sort array 0

212231 <1

321231 1

412231 <

110112 1

testing the 2D char input array)

2100 0

0001 the number of non-leaf nodes is: 7

2222

2222

2111

testing the available route array

43

73

Computer Lab Assignment Report 28 @Lei Wang 2018

set 9, testing 30 bits testing the available route array

testing input array before simplifying 0 30
testing the 2D char input array evaluating 000000000000000000000000000000
000000000000000000000 1
000000000 traversing the tree
after simplification root is: x1
testing the 2D int sort array 0
110111 x1
210111 0
310111 x2
410111 0
510111 x3
610111 0
710111 x4
810111 0
910111 x5
1010111 0
1110111 x6
1210111 0
1310111 X7
1410111 0
1510111 x8
1610111 0
1710111 x9
1810111 0
1910111 x10
2010111 0
2010111 x11
2210111 0
2310111 x12
2410111 0
2510111 x13
2610111 0
2710111 x14
2810111 0
2910111 x15
3010111 0
testing the 2D char input array x16
000000000000000000000 0
000000000 x17

Computer Lab Assignment Report 29 @Lei Wang 2018

x18
0
x19
0
x20
0
x21
0
x22
0
x23
0
x24
0
x25
0
x26
0
x27
0
x28
0
x29
0
x30
1

the number of non-leaf nodes is: 30

Computer Lab Assignment Report 30 @Lei Wang 2018

© 00 J O Ot = W N =

W W W W W W W N NN DNDNDDNDNDNIDNFE = = =2 = = = = = =
ST B W NN RO © 00O Ot E WO O 00N o0t e WD~ O

Part VI
Code

/%

x Run.cpp

*

x Created on: 15 April 2018
* Author: w2016

*/

#include<string >
#include<vector>

#include <iostream >
#include <sstream>
#include <math . h>

struct bdnode {
std ::string val;
bdnodex left ;
bdnodex right ;

};
typedef bdnodex bdt;

struct array_aux {

private:

//number of digits in each input element

int input_string_length;

//length of array
int array_length_1D;

//length of the wvector inpiut

int vector_len;

//int 1D array
int xseq_1D_int;

Computer Lab Assignment Report

@Lei Wang 2018

37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
o4
95
o6
o7
o8
29
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

//nx2"n

//2D char array

char xxseq_2D_char_input;

//for accelerating the checking process

bool xseq_1D_2D_available_space;

//for
J/bit
//bit
//bit
J/bit
//bit
//bit

sorting

0: bit position

1: bit = 0 counter
2: bit = 1 counter
3: mazx

4 sum

5: weight/priority

int *xxseq_2D_int_sort;

public:

array_aux (int len, int len_of_vector) {

input_string_length = len;

array_length_1D = pow(2, input_string_length);

vector_len =

//1D

seq_1D_int =

for (int i =

len_of_vector;

new int|[array_length_1D |;

0; i < array_length_1D; i++) {

seq_1D_int[i] = —1;

}
//2D & 1D
seq-2D _char_input = new charx|[vector_len];

seq-1D_2D _available_space = new bool[vector_len |;

for (int i =

0; i < vector_len; i++) {

seq_2D _char_input[i] = new char[input_string_length |;

seq-1D_2D _available_space[i] = false;

for (int j = 0; j < input_string_length; j++) {

seq_2D_char_input [i][]j] = ’27;

Computer Lab Assignment Report 32 @Lei Wang 2018

7
78
79
80
81
82
33
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

//2D

seq_2D_int_sort = new intx[input_string_length |;

for (int i = 0; i < input_string_length;
seq-2D_int_sort [i] = new int [6];
seq_2D_int_sort [i][0] = 1 + 1;
for (int j = 1; j < 6; j++) {
seq_2D_int_sort[i][j] = 0;

Tarray_aux () {
if (seq_1D_int) {
delete || seq_1D_int;

if (seq_2D_char_input) {
for (int i = 0; i < vector_len; i++) {
delete [] seq_2D _char_input[i];

}

delete || seq_2D _char_input;

if (seq_1D_2D_available_space) {
delete [] seq_1D_2D_available_space;

if (seq_2D_int_sort) {

for (int i = 0; i < input.string_length;

delete [] seq_2D_int_sort[i];

}

delete [|] seq_2D_int_sort;

int return_array_length_ 1D () {

i++) {

i++) {

Computer Lab Assignment Report 33

@Lei Wang 2018

117 return array_length_1D;

118 }

119

120 void seq-1D_int_set (int position, int val) {

121 seq_1D_int [position] = val;

122 }

123

124 int seq-1D_int_return (int position) {

125 return seq_1D_int[position];

126 }

127

128 void seq_-1D_int_test () {

129 for (int i = 0; i < vector_len; i++) {

130 std::cout << 1 << ' << seq-1D_int[i] << std::endl;
131 }

132 std :: cout << std::endl;

133 }

134

135 void seq_1D_2D _char_input_set(int position, std::string binary_string) {
136

137 if (seq-1D_int[position] = —1) {

138 //find the location in the 2D char table

139 //for inserting the new record

140 bool found = false;

141 int space_index = 0;

142

143 while (!found && space_index < vector_len) {

144 if (!seq_1D_2D_available_space[space_index]|) {
145 found = true;

146 seq-1D_2D _available_space [space_index| = true;
147 }

148 else {

149 space_index++;

150 }

151 }

152

153 //set the wvalue on the mapping list

154 seq-1D_int [position]| = space_index;

155

156 //set the wvalues in the 2D input table

Computer Lab Assignment Report 34 @Lei Wang 2018

157 for (int i = 0; i < binary_string.length (); i++) {
158 seq_2D _char_input [space_index |[i] = binary_string[i];
159 }

160 }

161 }

162

163 void seq_2D_char_input_set_bit (int position, int bit, char info) {
164

165 int index_hashed = seq_1D_int[position];

166

167 seq_2D _char_input [index_hashed |[bit] = info;

168 }

169

170 char seq_2D_char_input_return(int x, int y) {

171

172 int index_hashed = seq_1D_int [x];

173

174 return seq-2D_char_input [index_hashed][y];

175 }

176

177 int seq_2D_char_input_weight (int position) {

178

179 int index_hashed = seq_1D_int[position |;

180 int weight = 0;

181

182 if (index_hashed != —1) {

183 for (int i = 0; i<input_string_length; i++) {

184 if (seq_2D_char_input[index_hashed][i] != ’07) {
185 weight += pow (2, input_string _length — 1 — i);
186 }

187 }

188 return weight ;

189 }

190 return —1;

191

192 }

193

194 void seq_2D _char_input_test () {

195

196 std ::cout << "testing._the_2D_char_input_array” << std::endl;

Computer Lab Assignment Report 35 @Lei Wang 2018

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

for (int i = 0; i < vector_len; i++) {
for (int j = 0; j < input_string_length; j++) {
std :: cout << seq-2D_char_input[i][j] << ".7;

}

std :: cout << std::endl;

}

std :: cout << std::endl;
int check_available_routes () {
int available_routes_count = 0;
for (int i = 0; i < vector_len; i++) {

if (seq_1D_2D_available_space[i]) {

available_routes_count+4+;

}

return available_routes_count ;

void delete_route (int position) {
int index_hashed = seq_1D_int[position];

for (int i = 0; i < input_string_length; i++) {

seq_-2D _char_input [index_hashed |[i] = '27;
¥
seq_1D_int [position]| = —1;
seq-1D_2D _available_space [index_hashed| = false;

void seq_2D_int_sort_bit_set () {

//fill in at position 1 and 2
for (int i = 0; i < array_length_1D; i++) {

if (seq-1D_int[i] = —1) {
for (int j = 0; j < input_string_length; j++) {
if (seq-2D_char_input[seq-1D_int[i]][j] = '07) {

Computer Lab Assignment Report 36 @Lei Wang 2018

237 seq-2D_int_sort [j][1]++;

238 }

239 else if (seq_2D _char_input[seq_1D_int[i]][j] = 1) {
240 seq-2D_int_sort [j][2]++;

241 }

242 1

243 }

244 }

245

246 J/fill in at position 3 and 4

247 for (int i = 0; i < input_string_length; i++) {

248 if (seq_-2D_int_sort[i][1] <= seq-2D_int_sort[i][2]) {
249 seq_2D_int_sort [i][3] = seq_-2D_int_sort[i][2];
250 }

251 else {

252 seq_2D _int_sort[i][3] = seq-2D_int_sort[i][1];
253 }

254 seq-2D_int_sort [i][4] = seq-2D_int_sort[i][1]

255 + seq-2D_int_sort [i][2];

256 }

257 }

258

259 void seq_2D _int_sort_bit_sort (int bit_sort) {

260 int swap_tmpp_0;

261 int swap_tmpp_1;

262 int swap_tmpp_2;

263 int swap_tmpp_3;

264 int swap_tmpp_4;

265

266 //bubble sort the 2D int order array

267 //using the sum

268 for (int i = 0; i < input_string_length — 1; i++) {
269 for (int j = 0; j < input_string_length — 1; j++) {
270 if (seq-2D_int_sort[j][bit_sort]

271 < seq_2D_int_sort [j + 1][bit_sort]) {

272 swap_tmpp_0 = seq_2D _int_sort[j + 1][0];

273 swap_tmpp_-1 = seq_2D_int_sort[j + 1][1];

274 swap_tmpp_2 = seq_2D_int_sort [j + 1][2];

275 swap_tmpp_-3 = seq_2D_int_sort[j + 1][3];

276 swap_tmpp_4 = seq_-2D_int_sort [j + 1][4];

Computer Lab Assignment Report 37 @Lei Wang 2018

277

278 seq-2D_int_sort[j + 1][0] = seq-2D_int_sort[j][0];
279 seq_2D_int_sort[j + 1][1] = seq_-2D_int_sort[j][1];
280 seq-2D_int_sort[j + 1][2] = seq-2D_int_sort[j][2];
281 seq-2D_int_sort [j + 1][3] = seq-2D_int_sort[j][3];
282 seq-2D_int_sort [j + 1][4] = seq-2D_int_sort[j][4];
283

284 seq_2D_int_sort [j][0] = swap_tmpp_0;

285 seq_2D_int_sort[j][1] = swap_tmpp_1;

286 seq_2D_int_sort[j][2] = swap_tmpp_2;

287 seq_2D_int_sort[j][3] = swap_tmpp_3;

288 seq_2D_int_sort[j][4] = swap_tmpp_4;

289 }

290 }

291 }

202 }

293

294 //sort: sum first , max after

295 void seq_-2D_int_sort_bit_run() {

296 seq-2D_int_sort_bit_sort (4);

297 seq_2D_int_sort_bit_sort (3);

208 }

299

300 int seq_2D_int_sort_return (int x, int y) {

301 return seq_2D _int_sort [x][y];

302 }

303

304 void seq_2D_int_sort_test () {

305

306 std ::cout << "testing._the_.2D_int_sort_array” << std::endl;
307

308 for (int i = 0; i < input_string_length; i++) {

309 for (int j = 0; j < 6; j++) {

310 std :: cout << seq-2D_int_sort[i][j] << ".7;

311 }

312 std :: cout << std::endl;

313 }

314 std :: cout << std::endl;

315 }

316

Computer Lab Assignment Report 38 @Lei Wang 2018

317 void seq-2D_int_sort_priority_gen () {

318 int priority_level = 1;

319

320 seq-2D_int_sort [0][5] = priority_level;

321

322 for (int i = 1; i < input_string_length; i++) {

323 if (seq-2D_.int_sort[i][3] = seq-2D_int_sort[i — 1][3]
324 & seq_2D_int_sort[i][4] = seq-2D_int_sort[i — 1][4]) {
325 seq-2D_int_sort [i][5] = priority_level;

326 }

327 else {

328 priority_level++;

329 seq_2D_int_sort[i][5] = priority_level;

330 }

331 }

332 }

333 };

334

335 bdt buildcompactbdt (const std::vector<std::string>& fvalues);
336

337 std::string evalcompactbdt(bdt t, const std::string& input);
338

339 int binaryTolnt (const std::string num);

340

341 std ::string nodeNamer(const int level_label);
342

343 void nodeList (bdt t);

344

345 void nodeSetZero(bdt t);

346

347 int nodeCounter (bdt t);

348

349 void nodeCountAux(bdt t, int &count);
350

351 bdt buildcompactbdt(const std::vector<std::string>& fvalues) {
352

353 bdt bdt_array_-root = new bdnode;
354

355 if (fvalues.size() = 0) {

356 bdt_array_root—>val = 707 ;

Computer Lab Assignment Report 39 @Lei Wang 2018

357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

bdt_array_root—>right = NULL;
bdt_array_root —>left = NULL;

return bdt_array_root;

//qget the length of the input string
int string_length = fvalues[0].length ();

int input_length = fvalues.size ();

array_aux skarray_gen = new array_aux (string_length , input_length);

//load values

for (int i = 0; i < input_length;

array_gen

—>seq_1D_2D _char_input_set (binaryTolnt (fvalues[i]), fvalues[i]);

}

//uncomment the following for testing
// std::cout << 7testing input array before
// array_gen—>seq_-2D_char_input_test();

if (array_gen—>check_available_routes ()

= array._gen—>return_array_length_1D ()) {

bdt_array_root—>val = "17;

bdt_array_root —>right = NULL;
bdt_array_root —>left = NULL;

return bdt_array_root;

}

//simplify the routes
int count_before = 0;

int count_after = 0;
bool match_found = false;
int distance = 0;

int bit_position = 0;

simplifying” << std ::endl;

int length_ 1D = array_gen—>return_array_length_1D ();

int relative_position;
int weight_i;

int weight_relative;

Computer Lab Assignment Report

@Lei Wang 2018

397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436

int difference;

do {
//check the termination condition , before simplification

count_before = array_gen—>check_available_routes ();

for (int i = 0; i < length_1D; i++) {
if (array_gen—>seq_1D_int_return(i) != —1) {

match_found = false;

bit_position = 0;
while (bit_position < string_length && match_found = false) {
if (array_gen—>seq_2D _char_input_return(i, bit_position) = ’0")

distance = pow(2, (string_length — bit_position — 1));
relative_position = i 4+ distance;

weight i = array_gen—>seq_2D char_input_weight (i);
weight_relative = array_gen

—>seq_-2D _char_input_weight (relative_position);

difference = weight_relative — weight_i;

if (array_gen—>seq_1D_int_return(relative_position) != —1
&& difference = distance) {
array_gen—>delete_route (relative_position);
array_gen—>seq_2D _char_input_set_bit (i, bit_position, ’27);

match_found = true;

}

bit_position+-+;

//check the termination condition, after simplification

count_after = array_gen—>check_available_routes ();

} while (count_before != count_after);

Computer Lab Assignment Report 41 @Lei Wang 2018

437 array_gen—>seq_2D_int_sort_bit_set ();

438

439 //sort: sum first, max after

440 array_gen—>seq-2D_int_sort_bit_run ();

441

442 array_gen—>seq_2D _int_sort_priority_gen ();

443

444 //uncomment the following for testing

445 J/std ::cout << "after simplification” << std::endl;

446 J//array_gen—>seq_2D_int_sort_test ();

447 J//array_gen—>seq_-2D_char_input_test();

448

449 //create a table

450 //record the available routes

451 //calculate the corresponding weighting

452 int xxavailable_route = new int=x[array _gen—>check _available_routes ()];
453

454 for (int i = 0; i < array_gen—>check_available_routes (); i++) {
455 available_route[i] = new int [2];

456 available_route[i][0] = 0;

457 available_route [i][1] = 0;

458 }

459

460 int weighting = 0;

461 int available_route_pointer = 0;

462

463 for (int i = 0; i < array.gen—>return_array_length_1D (); i++) {
464

465 if (array_gen—>seq_1D_int_return(i) != —1) {

466

467 available_route[available_route_pointer |[0] = i;

468 bit_position = 0;

469 weighting = 0;

470

471 while (bit_position < string_length) {

472

473 if (array_gen—>seq_2D_char_input_return (i,

474 array_gen—>seq_2D _int_sort_return (bit_position, 0) — 1)
475 = 727) {

476 weighting 4= array_gen—>seq_2D _int_sort_return (bit_position ,

Computer Lab Assignment Report 42 @Lei Wang 2018

477 5);

478 }

479 bit_position++;

480 }

481 available_route [available_route_pointer |[1] = weighting;

482 available_route_pointer-++;

483 }

484 }

485

486 int swap_tmpp.0;

487 int swap_tmpp_1;

488

489 //bubble sort the route array

490 //small first

491 for (int i = 0; i < array_gen—>check_available_routes() — 1; i++) {
492 for (int j = 0; j < array_gen—>check_available_routes() — 1; j++) {
493 if (available_route[j][1] > available_route[j + 1][1]) {

494 swap_tmpp_0 = available_route[j][0];

495 swap_tmpp_1 = available_route[j][1];

496

497 available_route[j][0] = available_route[j + 1][0];

498 available_route[j]|[1] = available_route[j + 1][1];

499

500 available_route[j + 1][0] = swap_-tmpp_0;

501 available_route[j + 1][1] = swap_tmpp_1;

502 }

503 }

504 }

505

506 // testing

507 // std::cout << "testing the available route array” << std::endl;
508 // for (int i = 0; i < array_gen—>check_available_routes (); i++) {
509 // std::cout << awvailable_route[i][0] << ~ '~ << available_route[i][1]
510 // << std ::endl;

s /)

512 // std::cout << std::endl;

013

514 //start building the tree

515 bdt bdt_tmpp = bdt_array_root;

516 int level_label = 0;

Computer Lab Assignment Report 43 @Lei Wang 2018

017 int no_ignore_node_count = string_length;

018

519 //set the node counter in the router

520 for (int i = 0; i < string_length; i++4) {

521 if (array_gen

522 —>seq_2D _char_input_return (available_route [0][0], 1)

523 — 27) {

524 no_ignore_node_count ——;

525 }

526 }

527

528 //build the first route

529 for (int i = 0; i < string_length; i++) {

530 if (array_gen—>seq_2D_char_input_return(available_route [0][0],
531 array_gen—>seq_2D _int_sort_return(i, 0) — 1) = "1") {
532 level_label = array_gen—>seq_2D _int_sort_return (i, 0);
533 bdt_tmpp—>val = nodeNamer(level_label);

534 bdt_tmpp—>right = new bdnode;

535 bdt_tmpp—>left = NULL;

536 bdt_tmpp = bdt_tmpp—>right ;

237 no_ignore_node_count ——;

538 }

539 else if (array_gen—>seq_2D _char_input_return(available_route [0][0],
540 array_gen—>seq-2D_int_sort_return(i, 0) — 1) = '07) {
541 level_label = array_gen—>seq_2D_int_sort_return (i, 0);
542 bdt_tmpp—>val = nodeNamer(level_label);

543 bdt_tmpp—>right = NULL;

544 bdt_tmpp—>left = new bdnode;

545 bdt_tmpp = bdt_tmpp—>left ;

046 no_ignore_node_count ——;

547 }

548 if (no_ignore_node_count == 0) {

549 bdt_tmpp—>val = "17;

550 bdt_tmpp—>right = NULL;

551 bdt_tmpp—>left = NULL;

552 }

553 }

554

555 //build the other routes

556 //start from the root

Computer Lab Assignment Report 44 @Lei Wang 2018

557 //going along the existing route

558 //compare the current node name with the node required in the route
559 //if necessary, build extra nodes with the correct node names
560 int route_pointer = 1; //skip the first route, which is built
561 std::string current_node_string;

562 int current_node_int;

563 char retrieved_bit_value;

564 std::string new_node_name;

565 bool name_found;

566 int name_position_counter;

567

568 //array for storing the used nodes

569 bool xused node = new bool[string_length |;

570

571 while (route_pointer < array_gen—>check_available_routes()) {
572

573 //reset the pointer

574 //pointing the root

575 bdt_tmpp = bdt_array_root;

276

577 //reset the node counter in the route

o978 no_ignore_node_count = string_length;

279

580 for (int i = 0; i < string_length; i++4) {

581 if (array_gen—>seq_2D _char_input_return (

582 available_route [route_pointer][0],

583 i) = "2") {

584 no_ignore_node_count ——;

585 }

586 }

087

588 //reset the used node array

589 for (int i = 0; i<string_length; i++) {

590 used_node[i] = false;

591 }

5992

593 //keep building the tree

594 //until reaching the last element in the route

595 while (no_ignore_node_count > 1) {

296

Computer Lab Assignment Report 45 @Lei Wang 2018

597
298
299
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636

//get the current node/bit position/node name

current_node_string = bdt_tmpp—>val.substr (1,
(bdt_tmpp—>val.length () — 1));

std :: stringstream ssl;

ssl << current_node_string;

ssl >> current_node_int;

//set the current node
//used state to true
for (int i = 0; i<string-length; i++) {
if (array_gen
—>seq_2D _int_sort_return(i, 0) = current_node_int) {

used_node[i] = true;

//retrieve the bit from the array
//that stores the routing information
retrieved_bit_value = array_gen—>seq_2D char_input_return (

available_route [route_pointer|[0], current_node_int — 1);

//route the building sequence wusing the retrieved bit
//add extra mnode if the pointer is pointing to a NULL position
//skip adding new node if the node already exists
if (retrieved_bit_value = '0") {
if (bdt_tmpp—>left = NULL) {

//get the new node name

name_found = false;

name_position_counter = 0;

while (name_found = false) {
if (used_node[name_position_counter] = false && array_gen
—>seq-2D _char_input_return (available_route [route_pointer |[0],
array._gen

—>seq-2D _int_sort_return (name_position_counter, 0) — 1)

= 27) {

new_node_name = nodeNamer (
array_gen

—>seq_2D_int_sort_return (name_position_counter , 0));

Computer Lab Assignment Report 46 @Lei Wang 2018

637 name_found = true;

638 }

639 name_position_counter—++;

640 }

641

642 //create the mnode

643 bdt_tmpp—>left = new bdnode;

644

645 //name the new node

646 bdt_tmpp—>left —>val = new_node_name;

647

648 //set the left and the right of the new node to NULL
649 bdt_tmpp—>left —>right = NULL;

650 bdt_tmpp—>left —>left = NULL;

651 }

652 //update the pointer

653 bdt_tmpp = bdt_tmpp—>left ;

654 no_ignore_node_count ——;

655 }

656 else if (retrieved_bit_value = ’17) {

657 if (bdt_tmpp—>right =— NULL) {

658

659 //get the new node name

660 name_found = false;

661 name_position_counter = 0;

662 while (name_found = false) {

663 if (used_node[name_position_counter] = false

664 && array_gen

665 —>seq_2D _char_input_return (available_route[route_pointer][0],
666 array._gen

667 —>seq-2D _int_sort_return (name_position_counter, 0) — 1) = ’27)
668

669 new_node_name = nodeNamer

670 (array_gen—>seq_2D _int_sort_return (name_position_counter, 0),
671 name_found = true;

672 }

673 name_position_counter—++;

674 }

675

676 //create the node

Computer Lab Assignment Report 47 @Lei Wang 2018

677 bdt_tmpp—>right = new bdnode;

678

679 //name the new node

680 bdt_tmpp—>right —>val = new_node_name;

681

682 //set the left and the right of the new node to NULL
683 bdt_tmpp—>right —>right = NULL;

684 bdt_tmpp—>right —>left = NULL:

685 }

686 //update the pointer

687 bdt_tmpp = bdt_tmpp—>right ;

688 no_ignore_node_count ——;

689 }

690 J//retrieved bit = 2

691 //route to the right

692 //the same as retrieved bit = 1

693 else {

694 if (bdt_tmpp—>right = NULL) {

695

696 //get the new node name

697 //get the new node name

698 name_found = false;

699 name_position_counter = 0;

700 while (name_found = false) {

701 if (used_node|[name_position_counter| = false &&
702 array_gen

703 —>seq-2D _char_input_return (available_route [route_pointer |[0],
704 array._gen—>

705 seq_-2D_int_sort_return (name_position_counter, 0) — 1)
706 1= 727) {

707

708 new_node_name = nodeNamer

709 (array_gen

710 —>seq-2D_int_sort_return (name_position_counter, 0));
711 name_found = true;

712 1

713 name_position_counter—++;

714 }

715

716 //create the node

Computer Lab Assignment Report 48 @Lei Wang 2018

717 bdt_tmpp—>right = new bdnode;

718

719 //name the new node

720 bdt_tmpp—>right —>val = new_node_name;

721

722 //set the left and the right of the new node to NULL
723 bdt_tmpp—>right —>right = NULL;

724 bdt_tmpp—>right —>left = NULL;

725 }

726 //update the pointer

727 bdt_tmpp = bdt_tmpp—>right ;

728 }

729 }

730

731 //fill in the wvalue of the last element in the route
732 current_node_string =

733 bdt_tmpp—>val.substr (1, (bdt_tmpp—>val.length() — 1));
734 std :: stringstream ss;

735 ss << current_node_string;

736 ss >> current_node_int;

737

738 retrieved_bit_value = array_gen—>seq_2D _char_input_return (
739 available_route [route_pointer][0], current_node_int — 1);
740

741 if (retrieved_bit_value = '1") {

742 bdt_tmpp—>right = new bdnode;

743 bdt_tmpp—>right —>val = 717 ;

744 bdt_tmpp—>right —>right = NULL;

745 bdt_tmpp—>right —>left = NULL;

746 }

747 else {

748 bdt_tmpp—>left = new bdnode;

749 bdt_tmpp—>left —>val = 717

750 bdt_tmpp—>left —>right = NULL;

751 bdt_tmpp—>left —>left = NULL;

752 }

753 route_pointer++;

754 }

755

756 nodeSetZero(bdt_array_root);

Computer Lab Assignment Report 49 @Lei Wang 2018

757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
T
778
779
780
781
782
783
784
785
786
87
788
789
790
791
792
793
794
795
796

delete array_gen;

delete available_route;

delete used_node;

return bdt_array_root;

std::string evalcompactbdt(bdt t, const std::string& input) {

bool found = false;

std::string text;

int number;

if (t—val[0] != 'x7) {
return t—val;

while (found = false) {

text = t—>val;

text = text.substr (1, (text.length() — 1));

std::stringstream ss;
ss << text;

ss >> number;

if (input|[number — 1]
t = t—>right;

if (t—>val = 717 || t—>val =

found = true;

}

else if (input[number — 1]

t = t—>left;

1) A

if (t—>val = 717 || t—>val

found = true;

Computer Lab Assignment Report

@Lei Wang 2018

797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836

}

return t—val;

int binaryTolnt (const std::string num) {

int decimal = 0;

int length = num.length ();

for (int i = 0; i < length; i++4) {
if (num|[length — i — 1] I= '0") {
decimal = decimal + pow(2, i);
}
}
return decimal;

std :: string nodeNamer(const int level_label) {

std ::stringstream ss;
ss << "x”7 << level_label;

return ss.str();

void nodeList (bdt t) {

if (t != NULL) {
nodeList (t—>right);

std :: cout << t—>val << std::endl;

nodeList (t—>left);

void nodeSetZero(bdt t) {

if (t—>val[0] = 'x7) {

if (t—>right = NULL && t—>left != NULL) {

t—>right = new bdnode;
t—>right—>val = 707,
t—>right —>right = NULL;

Computer Lab Assignment Report

@Lei Wang 2018

837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
859
856
857
858
859
860
861
862

t—>right —>left = NULL;
}

if (t—>left = NULL && t—>right != NULL) {

t—>left = new bdnode;
t—>left —>val = 707 ;
t—>left —>right = NULL;
t—>left —>left = NULL;
}
nodeSetZero (t—>right);
nodeSetZero (t—>left);

int nodeCounter(bdt t) {
int count = 0;
nodeCountAux(t, count);

return count;

}
void nodeCountAux(bdt t, int &count) {
if (t—val[0] = 'x7) {
count++;

nodeCountAux (t—>right , count);

nodeCountAux (t—>left , count);

}

References

Computer Lab Assignment Report

@Lei Wang 2018

